Hydrostatické vážení: princip fungování, určování falešné zlaté koruny

Obsah:

Hydrostatické vážení: princip fungování, určování falešné zlaté koruny
Hydrostatické vážení: princip fungování, určování falešné zlaté koruny
Anonim

Mnoho vlastností pevných látek a kapalin, se kterými se v každodenním životě setkáváme, závisí na jejich hustotě. Jednou z přesných a zároveň jednoduchých metod měření hustoty kapalných a pevných těles je hydrostatické vážení. Zvažte, co to je a jaký fyzikální princip je základem jeho práce.

Archimedův zákon

Právě tento fyzikální zákon tvoří základ hydrostatického vážení. Tradičně se jeho objev připisuje řeckému filozofovi Archimédovi, který dokázal identifikovat falešnou zlatou korunu, aniž by ji zničil nebo provedl jakoukoli chemickou analýzu.

Archimédův zákon je možné formulovat následovně: těleso ponořené do kapaliny jej vytlačí a hmotnost vytlačené kapaliny se rovná vztlakové síle působící na těleso svisle.

Mnozí si všimli, že je mnohem snazší držet jakýkoli těžký předmět ve vodě než ve vzduchu. Tato skutečnost je ukázkou působení vztlakové síly, která je takézvaný Archimédův. To znamená, že v kapalinách je zdánlivá hmotnost těles menší než jejich skutečná hmotnost ve vzduchu.

Hydrostatický tlak a Archimédova síla

Příčinou vztlakové síly působící na absolutně jakékoli pevné těleso umístěné v kapalině je hydrostatický tlak. Vypočítá se podle vzorce:

P=ρl gh

Kde h a ρl jsou hloubka a hustota kapaliny.

Když je těleso ponořeno do kapaliny, výrazný tlak na něj působí ze všech stran. Celkový tlak na boční povrch se ukáže jako nulový, ale tlaky aplikované na spodní a horní povrch se budou lišit, protože tyto povrchy jsou v různých hloubkách. Tento rozdíl má za následek vztlakovou sílu.

Působení vztlakové síly
Působení vztlakové síly

Podle Archimedova zákona těleso ponořené do kapaliny přemístí její hmotnost, která se rovná vztlakové síle. Pak můžete napsat vzorec pro tuto sílu:

FAl Vl g

Symbol Vl označuje objem tekutiny vytlačené tělem. Je zřejmé, že se bude rovnat objemu těla, pokud bude tělo zcela ponořeno do kapaliny.

Síla Archiméda FAzávisí pouze na dvou veličinách (ρl a Vl). Nezáleží na tvaru těla ani na jeho hustotě.

Co je to hydrostatická váha?

Galileo je vynalezl na konci 16. století. Schematické znázornění váhy je znázorněno na obrázku níže.

Hydrostatická rovnováha
Hydrostatická rovnováha

Ve skutečnosti se jedná o běžné váhy, jejichž princip fungování je založen na vyvážení dvou stejně dlouhých pák. Na koncích každé páky je miska, kam lze umístit zátěž o známé hmotnosti. Na dně jednoho z kelímků je připevněn háček. Slouží k zavěšení břemen. Váha je také dodávána se skleněnou kádinkou nebo válečkem.

Na obrázku označují písmena A a B dva kovové válce stejného objemu. Jeden z nich (A) je dutý, druhý (B) je plný. Tyto válce se používají k demonstraci Archimedova principu.

Popsaná váha se používá k určení hustoty neznámých pevných látek a kapalin.

Vážení tělesa v kapalině
Vážení tělesa v kapalině

Hydrostatická metoda vážení

Princip fungování vah je extrémně jednoduchý. Pojďme si to popsat.

Předpokládejme, že potřebujeme určit hustotu nějaké neznámé pevné látky, která má libovolný tvar. Za tímto účelem se tělo zavěsí na háček levé stupnice a změří se jeho hmotnost. Poté se do sklenice nalije voda a sklenice se umístí pod zavěšenou zátěž a ponoří se do vody. Na tělo začíná působit Archimédova síla směřující nahoru. Vede k porušení dříve stanovené rovnováhy závaží. Pro obnovení této rovnováhy je nutné odstranit určitý počet závaží z druhé misky.

Znáte-li hmotnost měřeného tělesa ve vzduchu a vodě, stejně jako znáte hustotu vody, můžete vypočítat hustotu tělesa.

Hydrostatické vážení také umožňuje určit hustotu neznámé kapaliny. Pro tohleje nutné zvážit libovolné závaží připevněné na háčku v neznámé kapalině a poté v kapalině, jejíž hustota je přesně určena. Naměřená data jsou dostatečná pro určení hustoty neznámé kapaliny. Napišme odpovídající vzorec:

ρl2l1 m2 / m 1

Zde ρl1 je hustota známé kapaliny, m1 je naměřená tělesná hmotnost v ní, m 2 - tělesná hmotnost v neznámé kapalině, jejíž hustotu (ρl2) je třeba určit.

Určení falešné zlaté koruny

Zlatá koruna
Zlatá koruna

Pojďme vyřešit problém, který Archimedes vyřešil před více než dvěma tisíci lety. Použijme hydrostatické vážení zlata k určení, zda je královská koruna falešná.

Pomocí hydrostatické váhy bylo zjištěno, že koruna ve vzduchu má hmotnost 1,3 kg a v destilované vodě její hmotnost byla 1,17 kg. Je koruna zlatá?

Rozdíl v hmotnosti koruny ve vzduchu a ve vodě se rovná vztlakové síle Archiméda. Pojďme napsat tuto rovnost:

FA=m1 g - m2 g

Dosadíme vzorec za FA do rovnice a vyjádříme objem tělesa. Získejte:

m1 g - m2 g=ρl V l g=>

Vs=Vl=(m1- m 2) / ρl

Objem vytlačené kapaliny Vl se rovná objemu těla Vs, protože je zcela ponořeno dovoda.

Znáte-li objem koruny, můžete snadno vypočítat její hustotu ρs pomocí následujícího vzorce:

ρs=m1 / Vs=m 1 ρl / (m1- m2)

Dosaďte známá data do této rovnice a dostaneme:

ρs=1,31000 / (1,3 – 1,17)=10 000 kg/m3

Získali jsme hustotu kovu, ze kterého je korunka vyrobena. S odkazem na tabulku hustoty vidíme, že tato hodnota zlata je 19320 kg/m3.

Koruna v experimentu tedy není vyrobena z čistého zlata.

Doporučuje: